
FACULTY OF GRADUATE STUDIES

On The Performance of MSOVA for UMTS and
cdma2000 Turbo Codes

By

Hani Hashem Mis�ef

Supervisor

Dr. Wasel Ghanem

This Thesis was submitted in partial ful�llment of the requirements for the
Masters Degree in Scienti�c Computing, from The Faculty of Graduate Studies

at Birzeit University, Palestine.

January 2007

On The Performance of MSOVA for UMTS and cdma2000 Turbo
Codes

By

Hani Hashem Mis�ef

This thesis was defended successfully on January 8, 2007 and approved by:

Committee Members Signature

1. Dr. Wasel Ghanem

2. Dr. Was� Al-Kafri

3. Dr. Mohammad Saleh

TO MY MOTHER, FATHER, AND FAMILY

)Turbo Codes(א ، א א א א

.אאאא
א א א א א אא

א .אא
).SOVA()MAP(א

א ، א א ، א א אא
א.א א א אא

א. א א א א
)SOVA(−אא)MSOVA(.

א א)MSOVA(א
א א)UMTS(א

)cdma2000(، א א א א ،
א א .א

ABSTRACT

Turbo codes are one of the most important channel coding schemes because
of its excellent performance that approaches shannon limit. So it is adopted by
most of the modern digital communication systems. These codes are either a
parallel or serial concatenation of two or more convolutional encoders separated
by interleavers.
There are two main decoding algorithms for turbo codes; the MAP and SOVA

algorithms. The MAP algorithm has a very good performance but with large
complexity, while the SOVA algorithm is simpler but with worse performance.
So many modi�cations appeared for both algorithms. Recently, a modi�cation
to the conventional SOVA algorithm called Modi�ed SOVA or MSOVA was pro-
posed, which suggests to add two scaling factors to the output of the conventional
SOVA decoder.
In this research, the performance of the MSOVA decoding algorithm is studied

for the turbo codes used by the two third generation cellular standards; UMTS
and cdma2000, where the best values of the two scaling factors of the MSOVA
algorithm suitable for these turbo codes are found.

ACKNOWLEDGMENTS

I would like to express my thanks to my advisor Dr. Wasel Ghanem for his
support, patience and encouragement throughout this work. Also I would like
to thank Dr. Was�Alkafri for his help and valuable comments on this thesis. I
want also to send a special thank to Dr. Ali Grayyeb for his help in selecting
the topic of my research.
Words can only fail to express my thanks and appreciation to my parents for

their support and encouragement throughout my education.

Contents

1 Introduction 1
1.1 Channel Coding . 1
1.2 Channel Capacity . 3
1.3 Hard and Soft Decision Decoding . 3
1.4 Turbo Codes . 4
1.5 Thesis Overview . 5

2 Principles of Turbo Codes 6
2.1 Introduction . 6
2.2 Preliminaries of Coding Theory . 6

2.2.1 Types of Codes . 6
2.2.2 Properties of Codes . 10

2.3 Turbo Encoder Structure . 11
2.4 Turbo Decoding . 14

2.4.1 Log Likelihood Ratio Representation 14
2.4.2 Turbo Decoder Structure . 16
2.4.3 The SISO Decoder . 17
2.4.4 Iterative Decoding Process . 17

2.5 Interleavers . 18
2.5.1 Purpose of the Interleaver . 18
2.5.2 Interleaver Types . 19

2.6 Trellis Termination . 22
2.7 Puncturing . 23
2.8 Stopping Rules for the Iterative Decoder 23

3 Turbo Decoding Algorithms 25
3.1 Introduction . 25
3.2 The MAP Algorithm . 26
3.3 Approximations to the MAP Algorithm 29

3.3.1 Representation of The MAP Algorithm in the Log Domain . . 29
3.3.2 The Max-Log-MAP Algorithm 31
3.3.3 The Log-MAP Algorithm . 31
3.3.4 The Constant-Log-MAP Algorithm 31
3.3.5 The Linear-Log-MAP Algorithm 32

3.4 The Soft Output Viterbi Algorithm (SOVA) 32

vi

CONTENTS vii

3.5 The Modi�ed SOVA Algorithm (MSOVA) 34
3.6 Comparison of the Turbo Decoding Algorithms 36

4 Case Study: UMTS and cdma2000 Turbo Codes 39
4.1 Introduction . 39
4.2 UMTS Turbo Codes . 39

4.2.1 Encoder Structure . 39
4.2.2 Trellis Termination . 41
4.2.3 UMTS Turbo Interleaver . 41

4.3 The cdma2000 Turbo Codes . 42
4.3.1 Encoder Structure . 42
4.3.2 Puncturing Patterns . 43
4.3.3 cdma2000 Turbo Interleaver . 44

5 Simulation Results 46
5.1 Introduction . 46
5.2 Simulation Setup . 46

5.2.1 Basic Processing . 46
5.2.2 Channel Model . 47

5.3 Results for the UMTS turbo codes . 48
5.3.1 E¤ect of the Decoding Algorithm 48
5.3.2 E¤ect of Frame Size . 49
5.3.3 E¤ect of the Interleaver Type 51
5.3.4 E¤ect of the Number of Decoding Iterations 51

5.4 Results for the cdma2000 turbo codes 53
5.4.1 E¤ect of the Decoding Algorithm 53
5.4.2 E¤ect of Frame Size . 56
5.4.3 E¤ect of Code Rate . 56

6 Conclusions and Future Work 59
6.1 Summary of Work . 59
6.2 Conclusions . 59
6.3 Future Work . 60

List of Figures

1.1 Block diagram of digital communication system. 2

2.1 Codeword of a systematic block code 7
2.2 Non-systematic feedforward convolutional encoder 8
2.3 Recursive Systematic Convolutional encoder 8
2.4 State diagram of [1,5/7] convolutional encoder. 9
2.5 Trellis diagram of [1,5/7] convolutional encoder with 6 decoding steps 10
2.6 Block diagram of turbo encoder in its general structure. 12
2.7 Turbo encoder example . 13
2.8 Turbo decoder block diagram . 16
2.9 Rectangular Interleaver . 20

3.1 The SISO Decoder . 25
3.2 Calculation of �k using the forward recursion process. 28
3.3 Calculation of �k using the backward recursion process 28
3.4 Correction function for the

�
max function 32

3.5 Portion of the trellis explainning the decoding process used by SOVA . 34
3.6 Modi�ed turbo decoder with MSOVA component decoders 36

4.1 UMTS turbo encoder . 40
4.2 State diagram for the RSC encoder used in the UMTS turbo encoder . 40
4.3 cdma2000 turbo encoder . 43
4.4 Calculation of the output addresses for the cdma2000 turbo interleaver 45

5.1 BER performance of the UMTS TC using di¤erent decoding algorithms 49
5.2 BER performance of the UMTS TC using MSOVA decoding algorithm

with di¤erent frame sizes. 50
5.3 BER performance of the UMTS TC using MSOVA decoding algorithm

with di¤erent interleaver types . 51
5.4 BER performance of the UMTS TC using MSOVA decoding algorithm

with di¤erent number of iterations. 52
5.5 BER performance of the cdma2000 TC using di¤erent decoding algo-

rithms with 1
2 code rate . 54

5.6 BER performance of the cdma2000 TC using di¤erent decoding algo-
rithms with 1

3 code rate . 54

viii

LIST OF FIGURES ix

5.7 BER performance of the cdma2000 TC using di¤erent decoding algo-
rithms with 1

4 code rate . 55
5.8 BER performance of the cdma2000 TC using di¤erent decoding algo-

rithms with 1
5 code rate . 55

5.9 BER performance of the cdma2000 TC using MSOVA decoding algo-
rithm with di¤erent frame sizes and with 1

5 code rate. 57
5.10 BER performance of the cdma2000 TC using MSOVA decoding algo-

rithm with di¤erent code rates and with 186-bits frame. 58
5.11 BER performance of the cdma2000 TC using MSOVA decoding algo-

rithm with di¤erent code rates and with 1530-bits frame. 58

List of Tables

4.1 Inter-row permutation patterns for UMTS interleaver 42
4.2 Puncturing Patterns for the cdma2000 turbo codes 44

5.1 Minimum value of SNR required for the desired BER in UMTS TC
using di¤erent decoding algorithms with 1280-bits frame. 48

5.2 Minimum value of SNR required for the desired BER in UMTS TC
using MSOVA with di¤erent frame sizes. 50

5.3 Minimum value of SNR required for the desired BER in UMTS TC
using MSOVA with di¤erent number of iterations with 1280-bits frame 52

5.4 The best values for the MSOVA pair (c,d) used in the cdma2000 TC
for all code rates . 53

5.5 Minimum value of SNR required for the desired BER in cdma2000 TC
using di¤erent decoding algorithms with 1530-bits frame. 53

5.6 Minimum value of SNR required for the desired BER in cdma2000 TC
using MSOVA with di¤erent frame sizes and with rate 1/5. 56

5.7 Minimum value of SNR required for the desired BER in cdma2000 TC
using MSOVA with di¤erent code rates. 57

x

Chapter 1

Introduction

In this chapter, the importance of channel coding, and its role in modern communi-

cation systems are introduced brie�y. Then, the idea of channel capacity is explained

and the di¤erence between the soft and hard decision is shown. The principle of turbo

coding is then introduced. Finally, our work in this thesis is explained and the thesis

is outlined.

1.1 Channel Coding

Shannon�s second theorem [1] states that there is a theoretical maximum data rate

(channel capacity) at which information can be transmitted through a channel with

small probability of error if proper coding scheme is performed. So, errors caused by

channel noise, interference or fading can be detected and/or corrected by means of

what is called channel coding.

Channel coding plays a very important role in modern digital communication sys-

tems. Figure 1.1 shows a block diagram for a single digital communication link that

explains the function of channel coding. In this diagram, the information is provided

by a source which can be a telephone call or a computer �le in its digital form. The

information is passed through the source encoder which compresses the data by re-

moving redundant information to increase the e¢ ciency of the system. Then the data

is passed through a channel encoder that adds a redundant information to it in a

structured manner such that errors introduced by the channel can be detected or cor-

rected. The modulator converts the information symbols into signals appropriate for

transmission through the channel.

The channel in the diagram adds noise to the information, so the data becomes

embedded in a very large number of errors. Then, the demodulator accepts the signals

from the channel and converts it back to symbols that can be used by the channel

1

1. Introduction 2

Figure 1.1: Block diagram of digital communication system.

decoder. Here, the channel decoder removes the redundant information added by

the channel encoder and detects or corrects most of the errors introduced by the

channel. Finally, the information is decompressed by the source decoder which adds

the redundant information such that it becomes suitable for the destination.

A question may be asked, why to remove the redundant information by the source

encoder and then adds redundant information by the channel encoder? The answer

is simply, the redundant information on the data that comes from the source is un-

structured, and removing it will increase the e¢ ciency of the system without any

degradation on the performance. Whereas the redundant information added by the

channel encoder is structured to track errors and corrects them such that reliable

transmission is achieved.

Channel codes can be classi�ed into two types; Error Detection Codes (EDC) and

Error Correction Codes (ECC). The �rst class can only detect errors introduced by

the channel, but cannot repair them. The second class detects and then corrects the

errors based on the received data. The system that combines error detection coding

and error correction coding is called error control coding.

All Channel coding schemes accepts a message of k symbols and produces a code-

word of n symbols where k < n. The code rate is de�ned as shown in Eq. (1.1) where

1. Introduction 3

always r < 1.

r =
k

n
(1.1)

1.2 Channel Capacity

Channel capacity which was introduced by Claude Shannon in [1], is the maximum

data rate that the channel can support such that error free transmission is possible.

For example, the channel capacity of the Additive Wight Gaussian Noise (AWGN)

channel can be expressed as shown in Eq. (1.2).

C =
1

2
log2

�
1 +

2Es
N0

�
(1.2)

where Es is the transmitted energy per symbol, and N0
2 is the variance of the noise.

When using a coding scheme with code rate r, then the transmitted energy per

symbol can be expressed as Es = rEb, where Eb is the transmitted energy per bit. So,

for reliable transmission to take place, the code rate r must be less than the channel

capacity C, i.e. r < C.

Now consider the signal to noise (SNR) ratio represented by Eb
N0
, then the minimum

value of EbN0 that required to acheive error free transmission (Shannon limit) can be

expressed as shown in Eq. (1.3).

Eb
N0

� 1

2r

�
22r � 1

�
(1.3)

For practical issues, researchers take a Bit-Error Rate (BER) of (10�5) as a refer-

ence to compare the performance of di¤erent coding schemes to the shannon limit.

1.3 Hard and Soft Decision Decoding

Based upon the received sequence yk in any digital communication receiver, which

is the output of the matched �lter, the channel decoder makes a decision of which

message was actually transmitted. So there are two types of decoding:

Hard Decision Decoding (HDD)

In HDD, the decoder uses a quantized values for the received message (the output

of the matched �lter) which are usually bits. These bits are used by the decoder to

�nd errors introduced by the channel, and it is said that the decoder makes hard

decision. This method of decoding is simple to implement, but its performance is bad

because some informations are removed from the received sequence by quantization,

these informations represent the reliability of the received sequence.

1. Introduction 4

Soft Decision Decoding (SDD)

Unlike HDD, SDD decoder uses the output of the matched �lter directly without

quantization. So in this method of decoding, the decoder uses all the reliability values

of the received sequence such that the performance of decoding process is improved of

about (3dB) compared to that when hard decision decoding is used [2].

The soft decision decoding is more complex than hard decision decoding for two

reasons [3]. The �rst reason is that the decoding process in SDD is done using real

numbers compared to binary values in HDD. The second reason is that the SDD

decoder needs to calculate the a posteriori statistics of the received message as well as

the channel parameters.

Most of the traditional coding schemes use hard decision decoding such as linear

block codes, cyclic codes, hamming codes, Reed-Solomon codes and convolutional

codes. But the most recent codes which have the best performance use the soft decision

decoding. Examples of such modern coding schemes are the turbo codes, and the Low-

Density Parity-Check (LDPC) codes. Our work in this thesis is concentrated only on

turbo codes.

1.4 Turbo Codes

Turbo codes which was �rst proposed in [4] is one of the most important known

coding schemes. Because of their very good performance, turbo codes was adopted by

many modern communication systems and standards such as the most famous third

generation cellular standards; UMTS and cdma2000.

The �rst turbo code proposed in [4] was a parallel concatenation of two recur-

sive systematic convolutional encoders (RSC) separated with an interleaver, so it is

sometimes called Parallel Concatenated Convolutional Codes (PCCC). Computer sim-

ulations show that this type of codes has a very good performance at low signal-to-noise

ratios (SNR), but it su¤ers from error �oor and bad performance at higher signal-to-

noise ratios. Some designs for PCCC schemes show that it is possible to increase the

number of the RSC encoders to achieve lower code rates.

Another scheme of turbo codes was introduced in [5], which is called Serial Con-

catenated Convolutional Codes (SCCC). This type of codes concatenates two RSC

encoders in serial manner, with the �rst encoder called the inner encoder and the

other is called the outer encoder. SCCC turbo codes has lower performance than

PCCC at low SNR, but it has a very good performance at higher SNR. So, sometimes

to achieve good performance at low and high SNR, a hybrid concatenation (parallel

and serial) of convolutional codes may be used.

1. Introduction 5

The decoding of turbo codes is done in iterative fashion, where two decoders are

used in the turbo decoder. The �rst decoder decodes the �rst encoder output, and

the other decoder for the second encoder output . When the �rst decoder �nishes

decoding, it passes a reliability output to the second decoder. The second decoder

uses this reliability values as input, and it in turns produces reliability output which is

passed again to the �rst decoder. This process of decoding is called iterative decoding,

and it is explained in details in the following chapters.

In this thesis, it is focused only on PCCC, since it is used in the two third generation

cellular standards that are studied; UMTS and cdma2000.

1.5 Thesis Overview

In this thesis, the famous coding scheme known as Turbo Codes will be introduced, and

a new decoding algorithm proposed in [6] and called Modi�ed SOVA or MSOVA will

be examined. This algorithm is based on applying two attenuators to the conventional

SOVA decoder to improve the overall performance [6].

This decoding algorithm will be applied for turbo codes used by the two third

generation cellular standards; UMTS and cdma2000, and then an extensive computer

search will be done to �nd the best attenuators for these turbo codes schemes. Then,

the performance of MSOVA decoding algorithm for these codes will be determined

with several frame sizes and code rates, comparing all these results to the known

MAP and SOVA algorithms.

Chapter two of this thesis will introduce the basics of turbo codes, including encod-

ing, decoding, interleaving, puncturing and termination. In chapter three, the most

known decoding algorithms will be investigated, including MAP algorithm and its ap-

proximation algorithms, also conventional SOVA and the MSOVA proposed in [6] will

be explained.

A case study will be introduced in chapter four, showing the turbo codes used

by the UMTS and the cdma2000 standards. Simulation results will be explained and

showed in chapter �ve, and �nally the conclusion and the future work will be included

in chapter six.

Chapter 2

Principles of Turbo Codes

2.1 Introduction

In this chapter, the main principles for turbo codes are introduced. The structure

of the turbo encoder is investigated in details explaining the reasons for the good

performance of this coding scheme. Then the turbo decoding principles including

the Soft-input-Soft-Output (SISO) and the iterative decoding principles are explained

while investigating their e¤ect on the code performance.

Some of the main components and design issues for turbo codes are introduced

later in this chapter including interleaver purposes and its types, trellis termination

methods, puncturing patterns and some of the main stopping rules for the iterative

decoding process.

2.2 Preliminaries of Coding Theory

2.2.1 Types of Codes

Most of the known codes are categorized into two categories of codes; Block Codes and

Convolutional Codes. All modern coding schemes are modi�cations and/or combina-

tions of these codes.

Block Codes

Block codes accepts information messages block-by-block, where all blocks have the

same length. These types of codes is memoryless, so each codeword depends only on

the current message block, and is independent on the other codewords. Block codes

work in the following manner; it accepts information in successive k-bit blocks, and

adds for each block n � k parity bits which are generated from the current k bits

6

2. Principles of Turbo Codes 7

of the message block with a particular function to produce the overall codeword as

shown in Figure 2.1. Figure 2.1 shows a special type of codewords which is called

systematic codeword where the information message appears explicitly as a block in

the codeword.1

Figure 2.1: Codeword of a systematic block code

Convolutional Codes

Unlike block codes, convolutional codes treats incoming information in serial manner.

The current output of a convolutional encoder not only depends on the current input,

but it depends also on previous inputs and/or outputs. So, convolutional encoder has

memory to store previous inputs.

Basically, convolutional encoder consists of a shift register (memory) and some

modulo-2 arithmetic adders. So, it is similar to a Finite State Machine (FSM), where

the state of the encoder is determined from the contents of the memory. The output

of the encoder then can be calculated from its state and from the current input, so

that no bu¤ering is required for the input in convolutional codes unlike block codes.

If the number of memory cells is m, then there are m+1 shifts needed to calculate the

output (m states and the current input), this quantity is called the constrained length

of the encoder K, where K = m+ 1.

Figure 2.2 shows an example of a convolutional encoder with constrained length

K = 3. In this example, since the input to the encoder does not appear explicitly

in the output, the encoder is said to be non-systematic, and since the direct input

to the encoder does not depend on previous states, it is called feedforward encoder,

so this encoder acts as an FIR �lter. This type of encoders is used in most known

conventional convolutional encoders.

An example of a Recursive Systematic Convolutional (RSC) encoder is shown in

Figure 2.3. This encoder is said to be recursive because its current state depends on its

previous states in addition to the current input, so its response acts like an IIR �lter.

RSC encoders is widely used in concatenated codes, specially in the famous family of

1Block codes is beyond the scope of this thesis. For more details about block codes, see [2],[3].

2. Principles of Turbo Codes 8

Figure 2.2: Non-systematic feedforward convolutional encoder with constraint length
K=3.

Figure 2.3: Recursive Systematic Convolutional encoder with constrained length K=3

codes, called Turbo Codes.2

The generator function of convolutional encoders is represented in the form [g0; g1; :::; gn]

where g0; g1; :::; gn are octal numbers that represent the impulse response of each out-

put of the encoder. for example, the encoder in Figure 2.2 has a generator polyno-

mial of [7; 5]. If the encoder is RSC, then its generator is represented in the form

[1; g1g0 ;
g2
g0
; :::; gng0], where g0 represents the impulse response of the feedback branch, and

g1; :::; gn represents the impulse response of the parity outputs of the encoder. For the

encoder shown in Figure 2.3, the generator polynomial is [1; 57].

Since Convolutional encoders act as a �nite state machine, its function can be

described using a state diagram. A state diagram of the encoder in Figure 2.3 is

shown in Figure 2.4. If the state diagram is expanded in time, it forms the trellis

structure of the code.
2All encoders used in this thesis are RSC encoders, since our research is focused on turbo codes.

2. Principles of Turbo Codes 9

Figure 2.4: State diagram of [1,5/7] convolutional encoder.

Decoding Convolutional Codes The best known decoding algorithm for convo-

lutional codes is the Viterbi Algorithm. It is �rst proposed in [7], then it is explained

in [8]. The viterbi algorithm uses Maximum Likelihood Decoding principle by tracing

the trellis of the code. The decoding procedure is done by selecting one surviving

path from the trellis of the code which has the smallest distance from the received

codeword.

To select the surviving path using viterbi algorithm, for each branch in the trellis,

branch metrics which is the Hamming distance between the received code and the

output code associated with the branch must be calculated. Then the path metric is

calculated by adding the path metric of the previous state and the branch metric for

the branch connecting between the previous state and the current state. The surviving

path is selected such that the branch of the smallest path metric is chosen. Figure 2.5

shows portion of the trellis of the encoder shown in Figure 2.3, with the surviving path

shown with bold lines. A description of the viterbi algorithm is shown in Algorithm 1.

2. Principles of Turbo Codes 10

Figure 2.5: Trellis diagram of [1,5/7] convolutional encoder with 6 decoding steps

Algorithm 1 The Viterbi Algorithm
let t: the decoding step time, Sti : state i at time t,

M(Sti): path metric for state i at time t, r
t:the received vector at time t,

vj;i: the output associated with the branch connecting states j; i

BM t
j;i: the branch metric for the branch connecting states j; i

dH(c1; c2): the Hamming distance between codewords c1; c2

Initialization: set t = 0; M(S0i) = 0

for t = 1; 2; 3; :::

for i = 0; 1; :::; 2m � 1
Calculate Branch metric: BM t

j;i = dH(r
t; vj;i), BM t

k;i = dH(r
t; vk;i)

Add, compare, Select: M(Sti) = minfM(St�1j) +BM t
j;i;M(S

t�1
k) +BM t

k;ig
Update path

end

end

2.2.2 Properties of Codes

The question is now, how to distinguish good from bad codes? In fact, there are some

properties of codes that can be investigated to say if any coding scheme is good or bad.

In the following subsections, the most important properties of codes are introduced

brie�y.

2. Principles of Turbo Codes 11

Linearity

A given coding scheme is said to be linear if the result of the modulo-2 arithmetic

addition (XOR operation) of any two codewords in this code is also a codeword in the

code.

Since linear codes are easy to encode and decode, and because of its good perfor-

mance, the most known coding schemes are linear.

Hamming distance

The Hamming distance between any two codewords in the code is the number of

positions in which they di¤er. From this de�nition, the Free Hamming distance dfree
of the code is de�ned, which is the minimum Hamming distance between any two

codewords in the code. For convolutional codes, dfree can be found by tracing the

state diagram of the given code.

Hamming Weight

The Hamming Weight of a codeword is the number of non-zero elements in the code-

word. The Minimum Weight wmin of a code is the smallest Hamming weight of any

nonzero codeword. If the code is Linear, then the free Hamming distance of the code

is equal to the minimum weight of the code [2].

Sometimes, it is important to �nd the Weight Distribution of the code to examine

its properties. For example, to design good interleavers for turbo codes, its weight

distribution must be determined.

2.3 Turbo Encoder Structure

As stated in the previous section, turbo encoder consists of a parallel concatenation of

two or more recursive systematic convolutional encoders RSC separated by interleavers

as shown in Figure 2.6. The input for the �rst RSC encoder is the same as the

input stream to the turbo encoder, while the inputs to the other RSC encoders are

the interleaved versions of the turbo encoder�s input stream. The function of the

interleaver in the encoder is to permute the input stream to the turbo encoder such

that the output of the interleaver appears random compared to its input.

The systematic output of the turbo encoder is taken from the systematic output

of the �rst RSC encoder, while the systematic outputs from the other RSC encoders

are truncated. Then the systematic output of the �rst RSC encoder and all the parity

outputs of all the RSC encoders are multiplexed serially to form the overall codeword

of the turbo code.

2. Principles of Turbo Codes 12

Figure 2.6: Block diagram of turbo encoder in its general structure.

2. Principles of Turbo Codes 13

Figure 2.7: Turbo encoder example

To achieve a variable rate turbo code, puncturing may take place on the output of

the encoder where some of the parity outputs of the turbo encoder may be omitted

according to a special puncturing pattern. Turbo code designer must be careful in

choosing puncturing pattern, since bad choice of the puncturing pattern will cause a

large degradation in the performance.

An example for a turbo encoder is shown in Figure 2.7, where two RSC encoders

are concatenated in parallel. The two RSC encoders are identical which is the case for

the most known PCCCs, with generator polynomials [1; 57]. These RSC encoders are

the same to that shown in Figure 2.3, where its state diagram is shown in Figure 2.4.

Unlike conventional convolutional encoders which need to be implemented with

large memory elements to have better performance, the RSC encoders used in turbo

codes use only few memory elements to have a very good performance. So conventional

convolutional encoders are much more complex than that used in turbo encoders.

The in�nite impulse response of the RSC encoder makes its output code to have a

large Hamming weight with only a few number of low weight codewords. The number of

2. Principles of Turbo Codes 14

these low weight codewords can be decreased in the turbo encoder by proper mapping

of low weight codewords and high weight codewords from the �rst and the second RSC

encoder by means of good design for the interleaver.

It was shown in [9] that the error �oor on the performance that occurs at moderate

SNR is due to the existence of low codewords in the turbo code. So to lower the error

�oor, the free distance of the code must be increased or the number of low weight

codewords must be decreased. The author in [9] also showed that using RSC encoders

with primitive feedback polynomials will give a higher free distance of the code.

The most important result shown in [9] was that by proper design of the interleaver,

it is possible to reduce the low weight codewords by a process called Spectral Thinning.

So by spectral thinning of turbo codes, it is possible to lower or remove the error �oor

on the performance.

2.4 Turbo Decoding

In this section, a framework for the turbo decoding process is introduced, where the

basic structure of the decoder and the concept of iterative decoding are explained.

When the encoding of a codeword is �nished, the encoded bits are modulated and

transmitted through the channel. This thesis concentrates only on the Additive Wight

Gaussian Noise channel (AWGN). At the receiver side, the signal is demodulated

and the output of the matched �lter is passed to the turbo decoder. Notice that the

decoder input are soft values not hard values (bits).

At the front of the turbo decoder, the channel reliability values are calculated,

and the soft inputs to the decoder are formulated in a proper manner for decoding.

All inputs and outputs of the component decoders are implemented in Log Likelihood

Ratios (LLRs) which is described in the following subsection.

2.4.1 Log Likelihood Ratio Representation

For complexity considerations, all the information in the turbo decoder is represented

in LLRs. LLR representation of the information simpli�es the decision of the received

bit from absolute comparison of real values to only comparing the sign of the LLR

value. Eq. (2.1) shows the LLR representation of the natural logarithm of the ratio

of the conditional probability of that uk = +1, given that the received sequence is y

to the conditional probability of that uk = �1, given that the received sequence is y,
and is denoted by L(ukjy).

L(ukjy) , ln
�
P (uk = +1jy)
P (uk = �1jy)

�
(2.1)

2. Principles of Turbo Codes 15

The LLR values L(ukjy) are called the Log A Posteriori Probabilities, and these

values are what the component decoders in the turbo decoder search for.

The inputs to the turbo decoder are implemented in LLR based on the matched

�lter output. These LLRs are denoted by L(ykjxk) which is the natural logarithm of

the ratio of the conditional probability of that the matched �lter output is yk given

that the transmitted bit is xk = +1 to the conditional probability of that the matched

�lter output is yk given that the transmitted bit is xk = �1.

L(ykjxk) , ln
�
P (ykjxk = +1)
P (ykjxk = �1)

�
(2.2)

Assuming AWGN fading channel, the conditional probabilities shown in Eq. (2.2)

can be found using Eqs. (2.3),(2.4).

P (ykjxk = +1) =
1

�
p
2�
exp

�
� Eb
2�2

(yk � a)2
�

(2.3)

P (ykjxk = �1) =
1

�
p
2�
exp

�
� Eb
2�2

(yk + a)
2

�
(2.4)

Where � is the standard deviation of the noise, Eb is the per bit transmitted energy

and a is the fading coe¢ cient of the channel.

As indicated previously, if the channel is AWGN with BPSK modulation, then

L(ykjxk) can be simpli�ed as followed:

L(ykjxk) , ln

�
P (ykjxk = +1)
P (ykjxk = �1)

�

= ln

0@exp
�
� Eb
2�2

(yk � a)2
�

exp
�
� Eb
2�2

(yk + a)
2
�
1A

=

�
� Eb
2�2

(yk � a)2
�
�
�
� Eb
2�2

(yk + a)
2

�
= 4a

Eb
2�2

yk

= Lcyk (2.5)

Here Lc is constant through the decoding process and is called the Channel Relia-

bility, since it only depends on the channel parameters. Lc can be expressed as shown

in Eq. (2.6).

Lc = 4a
Eb
2�2

(2.6)

The soft channel inputs to the turbo decoder are represented in the form as shown

in Eq. (2.5).[10]

2. Principles of Turbo Codes 16

2.4.2 Turbo Decoder Structure

Turbo decoding process is done in two decoding phases, each with separate decoder as

shown in Figure 2.8. The �rst decoder decodes information that belongs to the �rst

RSC encoder, and the second decoder decodes information that belongs to the second

RSC encoder.

Figure 2.8: Turbo decoder block diagram

The two component decoders in the turbo decoder are Soft-In-Soft-Out (SISO)

decoders, where the inputs are in the form of soft channel inputs and reliability values

from the other decoder, and the output is the a posteriori probability. The reliability

values that enter the decoder from the other decoder denoted by L(uk) is called the

Apriori information. This information is sometimes called Intrinsic Information which

is the information about the bits to be decoded provided by the other decoder before

the decoding process begins. The soft channel inputs to the decoder are the matched

�lter outputs multiplied by the channel reliability Lc.

The direct output to the component decoder is the a posteriori information de-

noted by L(ukjy). Here, the purpose of the component decoder is to maximize the a
posteriori information on the bits to be decoded taking into account the apriori infor-

2. Principles of Turbo Codes 17

mation and soft channel inputs. The soft channel inputs and the apriori information

is excluded from the a posteriori information to produce a new information qauntity

called the Extrinsic Information and is denoted by Le(uk). This information is what

the component decoder passes to the other component decoder. The relation between

the extrinsic and the intrinsic information is shown in Eq. (2.7).

Le(uk) , L(ukjy)� L(uk)� Lcyk (2.7)

In Eq. (2.7), the extrinsic information is assumed to be independent from the in-

trinsic information. But in fact, this is not certain, since there is a dependency between

the extrinsic and intrinsic information. This dependency will a¤ect the iterative gain

of the turbo decoder, and so the overall performance of the turbo code will degrade.

So to have a better turbo code performance, the correlation coe¢ cient between the

extrinsic and intrinsic information must be reduced.

2.4.3 The SISO Decoder

The core of the decoding process is done in the SISO decoder. The SISO decoder

uses the trellis structure of the RSC encoder to trace all possible states of the code

and calculate LLR information by giving all the branches in the trellis a value called

Branch Metric. These branch metrics are used through the decoding process to obtain

an estimate for LLR of each bit.

There are two main algorithms for the SISO decoder; Maximum A Posteriori

algorithm (MAP) and Soft Output Viterbi Algorithm (SOVA). The MAP algorithm

was �rst proposed in [11], and because of its complexity, many approximations to

this algorithm appeared such as the Log-MAP and the MAX-Log-MAP algorithms.

The SOVA algorithm proposed in [12] is simpler than the MAP algorithm, but the

performance of the MAP algorithm is better than SOVA. The SOVA algorithm keeps

only one surviving path for each state in the trellis, and discards the other path.

Because of its bad performance, many modi�cations was proposed for the SOVA

algorithm. One of these algorithms is the Modi�ed SOVA or MSOVA proposed in [6],

which suggested to add two scaling factors to the output of the conventional SOVA

decoder. All these algorithms will be discussed in details in chapter three.

2.4.4 Iterative Decoding Process

The iterative decoding of turbo codes is one of the most important properties of turbo

codes that improves its performance. The decoding process of the turbo decoder

is described as follows; at the �rst iteration, the �rst SISO decoder takes the soft

channel inputs corresponding to the systematic bits and the parity bits of the �rst

2. Principles of Turbo Codes 18

RSC encoder, while the intrinsic information is set to zero. The extrinsic information

is then calculated by excluding the systematic soft channel inputs and the intrinsic

information from the a posteriori information which is the output of the SISO decoder.

Then the extrinsic information is interleaved and passed to the second decoder as

intrinsic information.

The second SISO decoder takes its intrinsic information from the �rst decoder, and

takes the interleaved version of the systematic soft channel input and the soft channel

inputs corresponding to the parity bits of the second RSC encoder. The extrinsic

information is then calculated and interleaved to be passed to the �rst encoder as

intrinsic information.

In the second iteration, the �rst SISO decoder now has an LLR estimates for

the decoded bits which are the intrinsic information provided by the other decoder.

these intrinsic information improves the decoder�s capability for decoding with better

performance. When the number of iterations is increased, the performance gets better

until some limit when increasing the number of iterations does not signi�cantly improve

the performance. When the number of iterations is increased, the decoding latency

is increased, so a compromise between latency and performance must be considered.

The number of iterations may be �xed to a value based upon experimental study, or

stopping rule my be used in the algorithm to decide when to stop decoding.3

2.5 Interleavers

Interleaver is a major element in the turbo coding system. It appears in the encoder

as well as the decoder as shown in Figure 2.6 and Figure 2.8. The following two

subsections explain the e¤ect of interleaving on turbo codes and introduce some types

of interleavers.

The function of the interleaver in the turbo encoder and decoder is to permute its

input stream to produce another stream that contains the same elements of the input

but with a di¤erent order such that the input and the output seem uncorrelated.

2.5.1 Purpose of the Interleaver

There are two main purposes for the interleaver in turbo codes [13]. The �rst one

is to reduce the correlation between the intrinsic and extrinsic information in the

turbo decoder to increase the iterative decoding gain of the decoder which increases

the overall performance of the decoder. The design of the interleaver must take this

purpose into consideration. To do so, a measure for the performance of iterative

3For more details about decoding turbo codes, see [2],[3] and [10].

2. Principles of Turbo Codes 19

decoding called Iterative Decoding Suitability (IDS) [14] is de�ned to be used as a

parameter in the interleaver design.

The second purpose for the inerleaver is to improve the weight distribution for the

turbo code. It is known that turbo codes has a good weight distribution compared

to other coding schemes, where this good weight distribution is a result of two main

components in the turbo encoder, the RSC encoder and the interleaver.4

The weight distribution of a code that uses a recursive encoder is better than non-

recursive encoder. The recursive encoder produces high weight codes even for low

weight input messages, but there still be some input messages that cause the recursive

encoder to produce low weight codewords.

The overall weight of the turbo encoder is the weight of the �rst RSC encoder added

to the weight of the second RSC encoder. For a given input message, if the �rst RSC

encoder produces low weight codeword, the other RSC encoder is likely to produce a

high weight codeword because the input message is permuted by the interleaver before

it enters the second RSC encoder, so the overall weight for the turbo code is high.

If the weight distribution of the turbo code is not taken into consideration in the

interleaver design, there will be a considerable number of low weight codewords in the

code, and so the free distance of the code will be relatively small. This is not good

for the turbo code since there will be an error �oor that a¤ect the performance of the

coding scheme. This error �oor is a¤ected by the free distance of the code as shown in

Eq. (2.8). Here, the free distance is the slope of the error �oor, so if the free distance

is small, then the slope of the error �oor is also small.[2]

Pb �
Nfree ewfree

N
Q

 s
dfree2rEb
N0

!
(2.8)

where Nfree is the number of codewords with distance dfree , and ewfree is the average
weight for the message that makes the encoder to produce codewords with distance

dfree.[2]

2.5.2 Interleaver Types

The design of interleaver is a very important issue in turbo coding schemes. Re-

searchers tried to �nd an interleaver structure that meats the requirements for the

turbo code introduced in the previous subsection with the minimum complexity for

implementation. So many types of interleavers was found ranging from simple to very

complex. Here are some of the most known today interleavers.

4To learn how to �nd the weight distribution of the turbo codes, see [15].

2. Principles of Turbo Codes 20

Rectangular Interleaver

This type of interleavers is the simplest one for implementation, but its performance is

very bad. It uses an R�C rectangular matrix with R rows and C columns, where the
input stream is written row by row, while the output is read out column by column

as shown in Figure 2.9.

Figure 2.9: Rectangular Interleaver

Diagonal Interleaver

The structure of the diagonal interleaver is the same as rectangular interleaver. The

input stream is written row by row but the output is read out in diagonals starting its

output from the �rst element of the �rst row[16].

Helical Interleaver

As in diagonal interleaver, the input stream in helical interleaver is written row by row

and read out in diagonals. The di¤erence between them is in the starting position to

read the output, where the helical interleaver starts to read out from the �rst element

of the last row[16].

2. Principles of Turbo Codes 21

Berrou Interleaver

It is the �rst interleaver used in turbo codes proposed in [4]. This interleaver is a

rectangular interleaver, where the input stream is written row by row, but the output

is read out in a pseudo-random manner.

Pseudo-Random Interleaver

This type of interleavers maps the N -block input stream in a pseudo-random manner

to an N -block output stream. This method of mapping helps in making the code

seems random and also reduces the correlation between the extrinsic and intrinsic

information in the turbo decoder such that an improvement in the performance is

achieved.

Every interleaver to have good performance must have some random properties

in its structure, so that random interleavers are considered as a reference for the

comparison between the performance of all other interleavers.

S-Random Interleavers

The structure of S-random interleaver is the same as pseudo-random interleaver ex-

cept that it has another restriction on the Spread S of the permuted sequence. This

restriction states that if two inputs to the interleaver, say (i; j) are separated with a

distance less than or equal to S, then they must be mapped to distance greater than

S in the permuted sequence. Consider (i; j) as the two indices for the interleaver, then

if

ji� jj � S

then, the interleaver design must guarantee that

j�(i)� �(j)j > S

where �(:) is the permutation function for the interleaver [17].

The spread S must be chosen as large as possible to have good performance, but

if it is so large, the interleaver design algorithm may fail to converge to the desired

interleaver. The convergence of the interleaver design algorithm is guaranteed if S <q
N
2 , where N is the interleaver size [13].

Optimal interleaver

The design of optimal interleaver is very complex, and it is dependent on the structure

of the turbo code. So every coding scheme will have a di¤erent interleaver design. The

2. Principles of Turbo Codes 22

design must take into consideration the weight distribution of the turbo code, where

extensive search is done for the best permutation scheme that produces codewords with

an optimum weight distribution. This can be achieved by �rst generating a random

interleaver, and then generating all the possible input messages and encoding them

while investigating the weights of all codewords to determine the minimum weight

for the code. This process is extensively repeated to obtain the optimal interleaver.

Two examples of such an optimal interleavers is that used for UMTS and cdma2000

standards which will be introduces later in this thesis.

2.6 Trellis Termination

Trellis termination is a very important issue in the design of turbo codes. If no trellis

termination is used in the turbo coding scheme, poor decoding performance will take

place near the end of the trellis, causing the overall performance of the turbo code to

be degraded.

Since the constituent encoders used in the turbo encoder are recursive, the ter-

mination of each encoder not only depends on the input stream as in non-recursive

encoders, but it also depends on the current state of the encoder. So each constituent

encoder can be terminated using a tail bits that depends on its state which are added

to the input message entering the encoder. But because of the presence of the inter-

leaver, the two constituent encoders are terminated in di¤erent states, so they need

two di¤erent tail bits to be terminated. This relation between trellis termination and

the interleaver shows that the termination and the interleaver design are dependant

to each other.

Five strategies for trellis termination in turbo codes can be considered as follows

[18]:

� No termination of any RSC encoder: this choice degrades the performance, and
makes the design of the interleaver very sensitive.

� Termination of the �rst RSC encoder: to terminate the �rst RSC encoder, the
proper tail bits which depend on the �nal state of the encoder are attached to

the input message. These tail bits are also passed to the second RSC encoder

after interleaving, where care must be taken in the interleaver design to permute

these tail bits far from the end of the trellis of the second RSC encoder.

� Termination of the second RSC encoder.

� Termination of both RSC encoders with separate tail bits: since the two RSC
encoders is terminated in di¤erent states, each encoder requires di¤erent tail bits

2. Principles of Turbo Codes 23

to be appended to its input to be truly terminated. The interleaver is o¤ while

the tail bits being encoded by each encoder.

� Termination of both RSC encoders with single tail bits: the �rst RSC encoder
is terminated with a tail bits, and then these bits are appended to the message

and passed to the other encoder through a special designed interleaver. This

interleaver makes the two encoders to be terminated in the same state, and it is

called Self-Terminating interleaver.

2.7 Puncturing

As stated in the previous sections, when the two RSC encoders in the turbo code

are concatenated in parallel, the systematic output of the �rst RSC encoder and the

parity outputs of both encoders are multiplexed such that the overall code rate is

r = 1
n , where n = 1 + 2 � z, assuming z is the number of parity outputs of each RSC

encoder. But to achieve variable rate turbo code, some of the parity bits of the RSC

encoders must be omitted (punctured) from the output code. This process is called

Puncturing of turbo codes, and the way in which the parity bits are punctured is called

Puncturing Pattern.

So puncturing is done only on parity bits not on systematic bits, since the system-

atic bits are needed by the iterative decoder to obtain good results.

Two classes of puncturing patterns are found for turbo codes; the �rst class has a

low rate code where its code rate takes the form of r = 1
n , where n = 2; 3; :::; 1+ 2 � z.

This class of puncturing is more conventional, and it is used by the cdma2000 third

generation cellular standard.

The other class of puncturing has a high rate code [19], with code rate of the form

r = k
k+1 , where 2 � k � 16. In this class of puncturing, only one parity bit from each

RSC encoder appears in the output code for each 2k systematic bits.

The puncturing pattern must be chosen to achieve the best performance. The

choice of the puncturing pattern should be based on the output weight distribu-

tion to achieve higher minimum distance of the code which is the key for good code

performance[19].

2.8 Stopping Rules for the Iterative Decoder

As stated in the previous sections, when the number of iterations in the turbo decoder

is increased, the performance gets better. But increasing the number of iterations will

increase the latency of the decoder which limits the decoding speed of the decoder.

2. Principles of Turbo Codes 24

So a compromise between these factors must take place to choose the proper �xed

number of iterations.

But since the input messages di¤er in its needs for the number of iterations, the

worst case is chosen to �nd the �xed number for the iterations. To avoid this, a

stopping rule may be used to decide when the iterative decoding can be halted with

the same probability of bit error performance as in the �xed number of iterations.

Here are some of these stopping rules [2]:

The Cross Entropy Stopping Rule

This method uses the cross entropy between the extrinsic information output to the

�rst component decoder in the turbo decoder, and the extrinsic information output to

the second component decoder. The cross entropy is de�ned as a measure of similarity

between these two quantities such that if the quantities are approximately equal, then

the cross entropy between them is minimal.

The cross entropy T (l) is de�ned as shown in Eq. (2.9)

T (l) �
N�1X
k=0

�
�
[l]
e

�2
exp

�
L[l;1] (ukjy) beu[l]k � (2.9)

where l is the iteration step, beu[l]k is the estimate for bit k at the l iteration step,

L[l;1] (ukjy) is the a posteriori probability output of the �rst decoder at the l iteration
step, �[l]e;t is the di¤erence between the extrinsic information output to the second and

the �rst component decoders at the l iteration step, where �[l]e = L
[l;2]
e (uk)�L[l;1]e (uk).

When the cross entropy at any iteration is less than a certain threshold, say T (l) <

10�3T (1), then the decoding process can be stopped.

The Sign Change Ratio Rule

This rule depends on the number of changes of signs of the extrinsic information output

to the �rst decoder compared to the extrinsic information output to the second decoder

denoted by C(l). When C(l) is less than certain threshold, the decoding process is

terminated.

The Hard Decision Aided Rule

This rule is similar to the sign change rule, except that the sign is taken for the a

posteriori probabilities output to the �rst and the second decoders. If they have the

same sign for all values in the frame, then the decoding process is stopped.

Chapter 3

Turbo Decoding Algorithms

3.1 Introduction

As indicated in the previous chapter, the SISO decoder is the most important element

in the turbo decoder. The function of the SISO decoder is to �nd an LLR estimates in

the form of a posteriori probabilities L(ukjy) for the decoded bits given the systematic
and parity soft channel inputs and the apriori information as seen in Figure 3.1.

Figure 3.1: The SISO Decoder

The SISO decoder uses an algorithm to trace the trellis of the code, and calculates

the proper LLRs. There are two main types of decoding algorithms for convolutional

codes and hence for the SISO decoder used in turbo codes. The �rst algorithm is

the Maximum A Posteriori (MAP) algorithm which was �rst proposed in [11], this

algorithm is sometimes called BCJR algorithm named after its inventors, Bahl, Cocke,

Jelinek, and Raviv. it will be seen in this chapter that this algorithm is very com-

plex, so many algorithms based on an approximations for the MAP algorithm will

be introduced in this chapter. These algorithms include The Log-MAP algorithm,

the Max-Log-MAP algorithm, the Constant-Log-MAP algorithm, and the Linear-Log-

MAP algorithm.

The second algorithm is the Soft Output Viterbi Algorithm (SOVA) proposed in

[12]. This algorithm is simpler than the MAP algorithm, but it has a worse perfor-

25

3. Turbo Decoding Algorithms 26

mance. A modi�cation to the SOVA algorithm was proposed in [6], and was called

Modi�ed SOVA or MSOVA. This Algorithm is the same as the conventional SOVA

algorithm, except that it adds two scaling factors to the output of the conventional

SOVA decoder. Simulation results show that MSOVA has a large improvement in the

performance over conventional SOVA.

In this chapter, all these algorithms are investigated in details, starting with the

MAP algorithm and its approximations, and then the SOVA and the MSOVA algo-

rithms.

3.2 The MAP Algorithm

MAP algorithm computes the a posteriori probabilities of the input information bits

by examining the received bits symbol by symbol. The a posteriori probability shown

in Eq. (3.1) can be written using Bay�s rule as shown in Eq. (3.2).

L(ukjy) , ln
�
P (uk = +1jy)
P (uk = �1jy)

�
(3.1)

L(ukjy) = ln
�
P (uk = +1; y)

P (uk = �1; y)

�
(3.2)

Suppose that the transition from state (p) at time (k � 1) to state (q) at time (k)
in the trellis structure of the code is associated with uk = +1 input bit1, then the joint

probability P (uk = +1; y) can be written as shown in Eq. (3.3).

P (uk = +1; y) =
X
T+

P (Sk�1 = p; Sk = q; y) (3.3)

where T+ is the set of all transitions (p; q) that are associated with the input bit

uk = +1. In the same way, we can write

P (uk = �1; y) =
X
T�

P (Sk�1 = p; Sk = q; y) (3.4)

where T� is the set of all transitions (p; q) that are associated with the input bit

uk = �1.
The received sequence y can be divided into three partitions; yprior, ycurrent and

yfuture, representing the prior observations, current observations and future observa-

tions respectively. So that the total received bits y is the union of the three partitions,

and the probability of y is the joint probability of the three partitions such that the

right side probability in Eq. (3.3) can be written as

1The calculation is the same if the input bit is uk = �1:

3. Turbo Decoding Algorithms 27

P (Sk�1 = p; Sk = q; y) = P (Sk�1 = p; Sk = q; yprior; ycurrent; yfuture) (3.5)

Using Bay�s rule, the probability in Eq. (3.5) can be modi�ed2 as shown in Eq.

(3.6).

P (Sk�1 = p; Sk = q; y) = P (Sk�1 = p; yprior)P (Sk = q; ycurrentjSk�1 = p)

�P (yfuturejSk = q) (3.6)

Then Eq. (3.6) can be rewritten as

P (Sk�1 = p; Sk = q; y) = �k�1 (p) k(p; q)�k(q) (3.7)

where

�k�1 (p) = P (Sk�1 = p; yprior) (3.8)

�k(q) = P (yfuturejSk = q) (3.9)

k(p; q) = P (Sk = q; ycurrentjSk�1 = p) (3.10)

Then the a posteriori probabilities can be calculated from the following equation.

L(ukjy) = ln
�P

T+ �k�1 (p) k(p; q)�k(q)P
T� �k�1 (p) k(p; q)�k(q)

�
(3.11)

To calculate the a posteriori probabilities from Eq. (3.11), the values of �k and �k
for every state in the trellis of the code must be computed and stored. The calculation

of �k is done by Forward Recursion calculations of the trellis of the code, while �k are

calculated by Backward Recursion of the trellis.

Figure 3.2 shows a portion of the trellis diagram explaining how the forward re-

cursion process is done to calculate �k(q) for each state in the trellis. The calculation

of the values of �k(q) is done using the following equation

�k(q) =

Q�1X
p=0

�k�1 (p) k(p; q) (3.12)

where Q is the number of states in the trellis of the code.

The initial values of �k are as the following: if the encoder begins encoding in the

zero state as usual, then �0(0) = 1, and �0(p) = 0, for p = 1; 2; :::; Q� 1. Else, if the
initial state of the encoder is undetermined, then �0(p) = 1

Q , for p = 0; 1; :::; Q� 1.
2To �nd the proof, see [2] and[10].

3. Turbo Decoding Algorithms 28

Figure 3.2: Calculation of �k using the forward recursion process.

The backward recursion process is explained in Figure 3.3, where Eq. (3.13) is

used to calculate the values of �k(p).

�k�1(p) =

Q�1X
q=0

�k (q) k(p; q) (3.13)

Figure 3.3: Calculation of �k using the backward recursion process

The �nal values of �k are chosen to be uniform, i.e. �N (q) =
1
Q , for q = 0; 1; :::; Q�

1, if the encoder is not terminated in the zero state. But if the encoder is terminated

in the zero state, then �N (0) = 1, and �N (q) = 0, for q = 1; 2; :::; Q� 1.

3. Turbo Decoding Algorithms 29

The values of k represent the Branch Metrics in the trellis of the code, where the

value of k(p; q) is associated with the branch connecting state (p) at time (k � 1) to
state (q) at time (k). These values of k are calculated from the input sequence from

the channel and from the apriori information depending on the model of the channel

as shown in Eq. (3.14) assuming AWGN channel.

k(p; q) = C:e
(ukL(uk)=2): exp

Lc
2

nX
l=1

yklxkl

!
(3.14)

where ykl is the soft channel input, xkl is the input bit associated with the branch

(p; q), and n is the number of individual bits within the codeword of the code. C is a

constant which is given by Eq. (3.15).

C = CL(uk):Cyk :Cxk (3.15)

where

CL(uk) =

e�L(uk)=2

1 + e�L(uk)

!
(3.16)

Cyk =
1�p
2��

�n exp

� Eb
2�2

nX
l=1

y2kl

!
(3.17)

Cxk = exp

�
� Eb
2�2

a2n

�
(3.18)

where � is the standard deviation of the noise, and a is the fading amplitude of the

channel.3

3.3 Approximations to the MAP Algorithm

3.3.1 Representation of The MAP Algorithm in the Log Domain

The MAP algorithm is very complex for implementation in its original form proposed in

[11], so many modi�cations take place on the MAP algorithm to decrease its complexity

while maintaining nearly the same performance. Since the complexity of the MAP

algorithm comes from the large number of multiplications needed to compute the

values of �k and �k, this complexity can be reduced by implementing �k and �k in

the log-domain where all the multiplications are transformed into additions.

Assume that
3All the equations and derivations in this section can be found in [2], [3], and [10].

3. Turbo Decoding Algorithms 30

e�k(p) = ln (�k(p))
e�k(q) = ln (�k(q))

ek(p; q) = ln (k(p; q))
From Eq. (3.12), the forward recursion process to calculate the values of e�k can

be written as

e�k(q) = Q�1X
p=0

e(e�k�1(p)+ek(p;q)) (3.19)

In the same way, Eq. (3.13) can be written as

e�k�1(p) = Q�1X
q=0

e(
e�k(q)+ek(p;q)) (3.20)

The values of ek(p; q) can be computed as shown in Eq. (3.21).
ek(p; q) = ln (C) + 12ukL(uk) + Lc2

nX
l=1

yklxkl (3.21)

The a posteriori information in the log-domain can be written as shown in the

following equation.

L(ukjy) = ln

0BB@
P
T+
e(e�k�1(p)+ek(p;q)+e�k(q))P

T�
e(e�k�1(p)+ek(p;q)+e�k(q))

1CCA (3.22)

From mathematics, Eq. (3.23) shown below can be used to approximate Eqs. (3.19,

3.20, 3.22).

ln

 X
n

ehn

!
=

�
max
n
(hn) (3.23)

where
�
max is an approximation function that will be explained in the following sub-

sections. Some algorithms are introduced based on the MAP algorithm each with an

approximation to the
�
max function. Using the

�
max function, Eqs. (3.19, 3.20, 3.22)

can be written as the followings.

e�k(q) = �
max

p2[0;:::;Q�1]
(e�k�1 (p) + ek(p; q)) (3.24)

3. Turbo Decoding Algorithms 31

e�k�1(p) = �
max

q2[0;:::;Q�1]

�e�k (q) + ek(p; q)� (3.25)

L(ukjy) =
�
max
T+

�e�k�1 (p) + ek(p; q) + e�k(q)�� �
max
T�

�e�k�1 (p) + ek(p; q) + e�k(q)�
(3.26)

3.3.2 The Max-Log-MAP Algorithm

This algorithm is the simplest approximation for the MAP algorithm, where the
�
max

is approximated as an ordinary max() function as shown in Eq. (3.27).

�
max(h1; h2) � max(h1; h2) (3.27)

From Eq.(3.27), when the algorithm is doing the forward recursion calculations to

�nd the values of e�k(p), it selects only one path in the trellis which has the highest
probability, and discards the other path. The same thing is done for the backward

recursion to �nd the values of e�k(q).
3.3.3 The Log-MAP Algorithm

The
�
max function can be approximated using the Jacobian Logarithm shown in Eq.(3.28)

ln
�
eh1 + eh2

�
= max(h1; h2) + ln

�
1 + e�jh2�h1j

�
(3.28)

where the second term in Eq.(3.28) can be replaced with a correction term in the

representation of the
�
max function as shown in Eq. (3.29)

�
max(h1; h2) = max(h1; h2) + fc (jh2 � h1j) (3.29)

where fc (jh2 � h1j) is a nonlinear correction term that is only dependant on one vari-

able which is the di¤erence between the two arguments of the
�
max function.

For practical implementation of the Log-MAP algorithm, the correction function

can be implemented using a discrete points that are stored in a look-up table.

3.3.4 The Constant-Log-MAP Algorithm

The correction function fc (jh2 � h1j) can be implemented using only two constant
values [20] as shown in Eq. (3.30).

fc (jh2 � h1j) �
(

C if jh2 � h1j � T
0 if jh2 � h1j > T

(3.30)

For UMTS turbo codes, the best values for C and T are C = 0:5 and T = 1:5 [21].

3. Turbo Decoding Algorithms 32

Figure 3.4: Correction function for the
�
max function in Log-MAP, Constant-Log-MAP

and Linear-Log-MAP algorithms[21].

3.3.5 The Linear-Log-MAP Algorithm

The correction function in the Jacobian logarithm can be approximated by a straight

line as shown in Figure 3.4, where it can be written as shown in Eq. (3.31).

fc (jh2 � h1j) �
(
a (jh2 � h1j � T) if jh2 � h1j � T
0 if jh2 � h1j > T

(3.31)

where a and T are constants that can be found by minimizing the total squared error

between the exact correction function and the linear approximation [21]. The author

in [21] proved that the best values for the parameters in the linear approximation are

a = �0:24904 and T = 2:5068.

3.4 The Soft Output Viterbi Algorithm (SOVA)

The Viterbi algorithm proposed in [7] cannot be used directly to decode turbo codes.

A modi�cation to the Viterbi algorithm was proposed in [12] to make it suitable for

iterative decoding used in turbo codes. This new algorithm was called the Soft-Output

3. Turbo Decoding Algorithms 33

Viterbi Algorithm (SOVA). To make the SOVA algorithm suitable for iterative decod-

ing, two modi�cations to the conventional Viterbi algorithms must be done. First, the

path metrics used by the SOVA must be modi�ed to use the apriori information, then

the algorithm must provide soft output in the form of LLR, which is a measure for the

reliability of the decisions.

The modi�ed path metric for the SOVA algorithm is shown in Eq. (3.32), where

the second term represents the apriori information provided by the other component

decoder of the turbo decoder.

M
�
Sik
�
=M

�
Sjk�1

�
+
1

2
ukL (uk) +

Lc
2

nX
l=1

yklxkl (3.32)

where Sik is state i at time k, and S
j
k�1 is the previous state of S

i
k.

Let M1
�
Sik
�
and M2

�
Sik
�
denote the two path metrics calculated for the state

Sik which are resulted from the transitions from states Smk�1 and S
n
k�1 to state S

i
k

respectively, and assume that M1
�
Sik
�
> M2

�
Sik
�
, then M1

�
Sik
�
is chosen as the

path metric for the state Sik, and the path connecting between the states S
m
k�1 and S

i
k

is chosen to be the surviving path, while the other path is discarded.

Let�s de�ne the path metric di¤erence at state Sik as

�ik =M
1
�
Sik
�
�M2

�
Sik
�

(3.33)

where always �ik � 0 since M1
�
Sik
�
> M2

�
Sik
�
.

The probability that the choice of the path metric M1
�
Sik
�
is correct is

P (correct) =
eM

1(Sik)

eM
1(Sik) + eM

2(Sik)
=

e�
i
k

1 + e�
i
k

(3.34)

Then the Log Likelihood Ratio is given as

L(correct) = ln

�
P (correct)

1� P (correct)

�
= �ik (3.35)

To explain the process of decoding used by the SOVA algorithm, portion of the

trellis of an [1; 57] RSC encoder is shown in Figure 3.5, where the surviving path is shown

in bold line. Also the discarded paths are shown where the dashed lines represent

the transitions associated with -1 input bits, while the continuous lines represent the

transitions associated with +1 input bits.

To calculate the LLR estimates which are the outputs of the SOVA decoder, a

window of length � is taken through the trellis, where � is chosen to be greater than

�ve times of the constraint length. Then the LLRs can be estimated as shown in Eq.

(3.36).

3. Turbo Decoding Algorithms 34

Figure 3.5: Portion of the trellis explainning the decoding process used by SOVA

L(ukjy) � uk min
l=0:::��1
uk 6=ulk

�ik+l (3.36)

where ulk is the input bit at time k associated with discarded path at time time k+ l.
4

3.5 The Modi�ed SOVA Algorithm (MSOVA)

The conventional SOVA algorithm su¤ers from bad performance when compared to

the MAP algorithm. The reason for the bad performance of the conventional SOVA

algorithm is the existence of a bias in the extrinsic information produced by the de-

coder. This bias is a result of the high correlation between the intrinsic information

at the input of the SOVA decoder and the extrinsic information at the output of the

SOVA decoder [22], [23], [6].

The authors in [22] and [23] proposed to add a scaling factor to reduce the bias

at the output of the SOVA decoder. The addition of this scaling factor improves the

performance of the overall turbo decoder with a considerable amount.

Another modi�cation to the SOVA was proposed in [6], which is called theModi�ed

SOVA or MSOVA. The author in [6] modi�ed the conventional SOVA algorithm such

that the correlation between the extrinsic information and the intrinsic information is

minimized.
4To �nd more details about SOVA, see [2], [3], and [10].

3. Turbo Decoding Algorithms 35

Consider the equation for the extrinsic information shown in Eq. (2.7), and let�s

de�ne a new term Li(uk) as the sum of the intrinsic information L(uk) and the soft

channel output Lcyk.

Li(uk) = L(uk) + Lcyk (3.37)

Then, Eq.(2.7) can be written as shown in Eq. (3.38).

Le(uk) = L(ukjy)� Li(uk) (3.38)

In Eq. (3.38), it is assumed that there is no correlation between Le(uk) and Li(uk)

which is not true, where the correlation between them is strong [6]. So this causes the

poor performance of the SOVA decoder as indicated in [6].

Assuming that the channel is AWGN channel, the extrinsic information Le(uk)

follows a gaussian distribution [12] as well as Li(uk). To modify the conventional

SOVA algorithm, let�s de�ne V (ukjy) as the direct output of the conventional SOVA
decoder which produces Ve(uk) as extrinsic information, such that Eq. (3.38) can be

written as

Ve(uk) , V (ukjy)� Li(uk) (3.39)

The a posteriori probability L(ukjy) can be modi�ed as shown below

L(ukjy) = ln

�
P (uk = +1jVe(uk); Li(uk))
P (uk = �1jVe(uk); Li(uk))

�

=

 2me
�2e
� � 2mi

�e�i

1� �2

!
Ve(uk) +

0@ 2mi

�2i
� � 2me

�e�i

1� �2

1ALi(uk)
= aVe(uk) + bLi(uk) (3.40)

where � is the correlation coe¢ cient between Ve(uk) and Li(uk), me and �2e are the

mean and variance of Ve(uk), mi and �2i are the mean and variance of Li(uk) respec-

tively.

From the de�nition of Ve(uk) shown in Eq. (3.39), the LLR a posteriori probability

can be written as

L(ukjy) = a (V (ukjy)� Li(uk)) + bLi(uk)

= aV (ukjy) + (b� a)Li(uk) (3.41)

Then, the extrinsic information Le(uk) can be obtained by substituting Eq. (3.41)

in Eq. (3.38) as follows

3. Turbo Decoding Algorithms 36

Figure 3.6: Modi�ed turbo decoder with MSOVA component decoders

Le(uk) = (a+ 1� b)
�

a

a+ 1� bV (ukjy)� Li(uk)
�

= c� (d� V (ukjy)� Li(uk))

= c� (d� V (ukjy)� L(uk)� Lcyk) (3.42)

To calculate the values of the pair (c; d), the means and variances of Ve(uk) and

Li(uk), and also the correlation coe¢ cient between Ve(uk) and Li(uk) must be com-

puted. This calculations will make the new MSOVA algorithm very complex. For-

tunately, it is claimed by the author in [6] that for a �xed encoder structure and

puncturing pattern, there is a �xed pair (c; d) than can be computed using computer

simulations to have the best performance.

In this thesis, an extensive computer search is donen to �nd the (c; d) pair suitable

for the MSOVA algorithm for the turbo codes used by the UMTS and cdma2000

standards. The results of these simulations is explained in details in chapter �ve.

3.6 Comparison of the Turbo Decoding Algorithms

From the previous sections, it can be seen that the MAP algorithm is the most complex

algorithm among all known turbo decoding algorithms. The Max-Log-MAP algorithm

3. Turbo Decoding Algorithms 37

is the simplest version of the MAP algorithm. It is shown in [24] that the total

number of operations per bit of the Max-Log-MAP algorithm is 30% less than the

MAP algorithm. Also, it is shown in [24] that the total number of operations per bit

of the Log-MAP algorithm is 3.6% less than the MAP algorithm.

The Max-Log-MAP algorithm is much less complex than the MAP algorithm since

all the multiplications in the MAP are transformed to additions and selections using

the max function. The complexity added to the Log-MAP algorithm over the Max-

Log-MAP is that of the correction function used. The correction function used in

the Log-MAP algorithm needs to be stored as separate values in a lookup table, so

an additional memory for the lookup table is needed by the Log-MAP algorithm.

The same thing can be said for the Constant-Log-MAP and the Linear-Log-MAP

algorithms, where the complexity of the implementation of the correction function is

added to the complexity of the Max-Log-MAP algorithm.

The Max-Log-MAP algorithm can be viewed as two SOVA decoders, one operated

in the forward recursion, and the other in the backward recursion. So the complexity

of the Max-Log-MAP algorithm is twice the complexity of the conventional SOVA

algorithm [21].

Since the MSOVA algorithm di¤ers from the conventional SOVA only by adding

the two multipliers, its complexity is the same as that for the conventional SOVA

except that there is a small additional complexity caused by the two scaling factors

(c; d).

The memory requirements of the MAP algorithm and all its approximation versions

are larger than that for the SOVA and the MSOVA algorithms. For example, the values

of �k in the forward recursion, and the values of �k in the backward recursion must

be stored for each node in the trellis. In the SOVA algorithm, The values of the path

metric di¤erence �ik for each node in the trellis must be stored.

One way to reduce the memory requirements used by the turbo decoding algorithm

is by using a sliding window to decode the entire codeword. Another way is to decrease

the number of bits used to represent each path metric. The last way may decrease the

performance of the turbo decoder if the proper precision is not used.

The MAP algorithm has the best performance among all other algorithms. The

Log-MAP algorithm performance is nearly the same as that for the MAP algorithm.

For example, it is shown in [21] that for the UMTS turbo code with frame =5114 bits,

and 14 iterations, the Max-Log-MAP algorithm needs about 0.4 dB for the Eb=N0
higher than that required for the Log-MAP algorithm at a Bit-Error-Rate (BER) of

10�5 . The BER for the Linear-Log-MAP and the Constant-log-MAP is also shown

in [21] to be near the BER of the Log-MAP algorithm with a better performance of

the Linear-Log-MAP.

3. Turbo Decoding Algorithms 38

The performance comparison between the MAP, SOVA and MSOVA algorithms

is left to be discussed in details in chapter �ve, where our simulation results in this

thesis is used for the comparison.

Chapter 4

Case Study: UMTS and
cdma2000 Turbo Codes

4.1 Introduction

In this chapter, the turbo codes used in the two third generation cellular standards,

UMTS and cdma2000 are introduced. The encoder structure for the turbo codes in

each standard is explained in details describing the trellis termination used and how the

output codeword is multiplexed. Also the puncturing patterns used in the cdma2000

turbo codes are showed for all code rates. Finally, the interleavers structures for both

standards are described.

4.2 UMTS Turbo Codes

4.2.1 Encoder Structure

The turbo encoder used in the UMTS standard is a parallel concatenation of two

recursive systematic convolutional encoders with constraint length K = 4, and number

of states Q = 8 as shown in Figure 4.1. The generator function of each RSC encoder

is

G = [1;
15

13
]

where 15 is the feedforward polynomial in octal, and 13 is the feedback polynomial1.

The state diagram of this RSC encoder is shown in Figure 4.2, where the dashed

transition lines correspond to 0 input bits, and the continuous lines correspond to 1

1The generator polynomials can be obtained from the tap connections of the RSC encoder, or using
the impulse response of the encoder.

39

4. Case Study: UMTS and cdma2000 Turbo Codes 40

Figure 4.1: UMTS turbo encoder [25]

Figure 4.2: State diagram for the RSC encoder used in the UMTS turbo encoder

4. Case Study: UMTS and cdma2000 Turbo Codes 41

input bits. The outputs of the encoder are also shown attached to each transition line.

The input bits uk for the encoder is arranged in blocks of frame sizes ranging from

40 to 5114 bits (40 � N � 5114) [25]. The outputs of the encoder are multiplexed

serially to form the encoded codeword, where the systematic output of the �rst RSC

encoder is put �rst in the coderword followed by the parity outputs of the �rst and the

second RSC encoders respectively such that the codeword of the UMTS turbo code

becomes as

:::; Xk�1; Yk�1; Y
0
k�1; Xk; Yk; Y

0
k ; Xk+1; Yk+1; Y

0
k+1; :::

Because The output of the UMTS turbo encoder consists of three bits for every

input bit, and there is no puncturing at the output of the encoder, then the code rate

will be r = 1
3 .

4.2.2 Trellis Termination

The �rst and the second RSC encoders of the UMTS turbo encoder are both terminated

with two separate tail bits[25]. The switch at the front of each encoder as shown in

Figure 4.1 is connected to the input of the encoder when encoding the entire frame

with size N . When the encoder �nishes encoding the entire frame, the second RSC

encoder is disabled while the switch at the front of the �rst encoder changes its state

to connect to the feedback tap such that the encoder inputs will be zeros2, and the

encoder is terminated after 3 clocks. The outputs of the turbo encoder during this

process are only the systematic and the parity bits of the �rst encoder.

When the �rst RSC encoder is terminated, it is disabled, and the same process

takes place for the second RSC encoder. During this process, the outputs of the turbo

encoder are the systematic and the parity outputs of only the second encoder. So, the

overall turbo encoder outputs during the termination process are as shown below.

XN+1; YN+1; XN+2; YN+2; XN+3; YN+3; X
0
N+1; Y

0
N+1; X

0
N+2; Y

0
N+2; X

0
N+3; Y

0
N+3

Since the previous 12-bits tail is added to the overall output of the turbo encoder,

the exact code rate is modi�ed as seen in Eq. (4.1).

r =
N

3N + 12
(4.1)

2Because the XOR operation of the same input will yeild a zero output.

4. Case Study: UMTS and cdma2000 Turbo Codes 42

Frame Size N No. of rows R Inter-row permutation patterns
(40 � N � 159) 5 4,3,2,1,0

(160 � N � 200) or 10 9,8,7,6,5,4,3,2,1,0
(481 � N � 530)

(2281 � N � 2480) or 20 19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10
(3161 � N � 3210)
N = any other value 20 19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11

Table 4.1: Inter-row permutation patterns for UMTS interleaver

4.2.3 UMTS Turbo Interleaver

The UMTS turbo code interleaver uses an R�C rectangular matrix, where the input
bits are written row by row, and read column by column after performing inter-row

and intra-row permutations on the rectangular matrix. Since the size of the input

bits may be less than the size of the matrix, a dummy bits is padded to the empty

positions in the matrix. When the output needs to be read from the interleaver, the

dummy bits added with padding to the matrix must be pruned from this output.

The number of rows of the rectangular matrix can be 5, 10 or 20 according to the

value of the frame size N . The inter-row permutation patterns used in the UMTS

interleaver is shown in Table 4.1 [25].

The intra-row permutations is more complex, where a prime number p and a cor-

responding primitive root v are chosen from a special table. The selected value of p is

used to select the number of columns C, and the values of p and v are used to perform

the intra-row permutations using a special algorithm which is explained in details in

[25].

To read out the interleaved sequence from the permuted rectangular matrix, it

must begin from �rst element, and read column by column while pruning the dummy

bits padded in the matrix at the write process.

4.3 The cdma2000 Turbo Codes

4.3.1 Encoder Structure

The turbo encoder used by the cdma2000 standard is shown in Figure 4.3. The RSC

constituent encoders used in this turbo encoder is the same as that used in the UMTS

turbo encoder, except that it has a second parity output. Since there are two parity

outputs in each RSC encoder, the basic code rate for the cdma2000 turbo code is

r = 1
5 .

4. Case Study: UMTS and cdma2000 Turbo Codes 43

Figure 4.3: cdma2000 turbo encoder [26]

The generator function for the RSC encoders is

G = [1;
15

13
;
17

13
]

where 13 is the feedback polynomial generator in octal, 15 is the generator polynomial

for the �rst parity output, and 17 is the generator polynomial for the second parity

output.

Code rates of 14 ,
1
3 , and

1
2 are also used in cdma2000 turbo codes as well as the

1
5 code rate. These code rates can be achieved by puncturing the parity outputs of

the �rst and the second RSC encoders. Puncturing patterns for the cdma2000 turbo

codes are discussed in details in the following subsection.

The trellis termination of the cdma2000 turbo encoder is the same as that for the

UMTS turbo encoder, where two separate tail bits are used to terminate each encoder.

The only di¤erence between these two trellis termination methods is in the puncturing

of the tail bits if code rates lower than 1
5 are used[26].

The Frame size of the input bits to the cdma2000 turbo encoder can take only one

of the following sizes; 186, 378, 402, 570, 762, 786, 1146, 1530, 1554, 2298, 3066, 3090,

4602, 4626, 6138, 6162, 9210, 9234, 12282, 12306, 15378, 18450, 20730.

4. Case Study: UMTS and cdma2000 Turbo Codes 44

Output r = 1
2 r = 1

3 r = 1
4 r = 1

5

X 11 11 11 11
Y0 10 11 11 11
Y1 00 00 10 11
X

0
00 00 00 00

Y
0
0 01 11 01 11
Y
0
1 00 00 11 11

Table 4.2: Puncturing Patterns for the cdma2000 turbo codes

4.3.2 Puncturing Patterns

As stated in the previous subsection, code rates of 14 ,
1
3 , and

1
2 in addition to the basic

code rate of 15 can be achieved in the cdma2000 turbo codes using puncturing process.

Puncturing is done by deleting some of the parity outputs of the turbo encoder in a

special manner, such that variable code rate is possible.

The puncturing patterns used in the cdma2000 turbo codes for every code rate are

shown in Table 4.2 [26], where this table is read �rst from top to bottom and then

from left to right.

In Table 4.2, the 0 entry means that the corresponding output bit must be removed

from the overall turbo code output, while the 1 entry means that the corresponding

output bit must remain in the turbo code output.

4.3.3 cdma2000 Turbo Interleaver

The cdma2000 interleaver consists of an array with size of the same as the input bits

frame size. The input bits are written in the array starting from the �rst position of

the array. Then the output bits are read out from a sequence of addresses in the array

de�ned by the algorithm described in the block diagram shown in Figure 4.4 [26].

The calculations of the output addresses are done using an (n + 5) bit counter,

where n are chosen to be the minimum value such that 2(n+5) � N . The algorithm

shown in Figure 4.3 is equivalent to writing the values of the counter to an 25 � 2n

matrix, where the inter-rows permutations follow the bit reversal rule, while the intra-

row permutations are done according to the following rule

x(i+ 1) = (x(i) + c)mod 2n

and

x(0) = c

4. Case Study: UMTS and cdma2000 Turbo Codes 45

Figure 4.4: Calculation of the output addresses for the cdma2000 turbo interleaver
[26]

where c can be found from a lookup table that can be found in [26].

Chapter 5

Simulation Results

5.1 Introduction

In this chapter, the simulation results for the UMTS and the cdma2000 turbo codes

are shown in details for di¤erent decoding algorithms, concentrating on the MSOVA

algorithm. The results are shown for various inerleavers, frame sizes, code rates,

number of iterations and frame sizes. These results are analyzed while comparing the

performance for each case.

All the results are shown in the form of the Bit-Error Rate (BER) against the

signal to noise ratio represented in the form of EbN0 , where Eb is the per bit transmitted

energy, and N0 is the one sided power spectral density of the code. The simulations

in this thesis assume AWGN channel with QPSK modulation.

5.2 Simulation Setup

5.2.1 Basic Processing

All the simulations used in this thesis are done using ANSI C language under the

Linux environment. The simulation setup consists basically of an encoder, decoders

and interleavers as described in Figures 2.8, 3.6, 4.1 and 4.3. The input messages are

streams of binary bits that are generated randomly with the built-in Linux pseudo-

random generator. The input messages are encoded with the turbo encoder which

consists of two identical RSC encoders. The structures of the RSC encoders used for

both, the UMTS and the cdma2000 turbo codes are described using tables that contain

a detailed description of the state diagram of the RSC encoder.

The interleaver and de-interleaver are saved in two arrays that contain the indices

corresponding to the permutation pattern of the interleaver.

46

5. Simulation Results 47

When the input massage is encoded by the turbo encoder, it is mapped to the

corresponding f�1;+1g symbols which represent the QPSK modulation used in our

simulation, and then, it is summed with an AWGN input that corresponds to the given

N0. The AWGN noise is generated using a model that is described in the following

section.

The output of the channel then is passed to the turbo decoder which is described

in Figures 2.8 and 3.6. The decoding process is done iteratively for a �xed number of

iterations, then decoded output bits are taken by investigating the sign of Lout which

is de�ned in Eq. (5.1).

Lout = L12 + L21 + Lcyk (5.1)

where L12 is the extrinsic information passed from the �rst decoder to the second

decoder, and L21 is the extrinsic information passed from the second decoder to the

�rst decoder after de-interleaving.

The number of errors then is calculated by comparing the decoded output to the

input message. Then the procedure is repeated for a large number of frames until a

considerable number of errors is reached.

The BER is then calculated as

BER =
NEtotal
Nf � size

where NEtotal is the total number of errors, Nf is the number of frames, and size is

the frame size.

To �nd the values of the pair (c; d) for the MSOVA algorithm in the UMTS and

cdma2000 turbo codes, an extensive search for these parameters was done, assuming

that their values are within the period [0:7; 0:9] which is shown by the author in [6].

5.2.2 Channel Model

The channel model used in these simulations uses the Box-Muller method to calcu-

late the noise. In Box-Muller method, suppose that two pseudo-random numbers are

generated, say u1 and u2, then the noise is calculated using the following equations[27].

f =
p
�2 ln (u1)

g1 = sin (2�u1)

g2 = cos (2�u1)

5. Simulation Results 48

Algorithm Eb
N0
at BER=10�5 Eb

N0
at BER=10�6

MAP 0.875 1.12
MSOVA 1.07 1.26
SOVA 1.37 1.67

Table 5.1: Minimum value of SNR required for the desired BER in UMTS TC using
di¤erent decoding algorithms with 1280-bits frame.

x1 = f � g1 (5.2)

x2 = f � g2 (5.3)

The generated AWGN noise can then be calculated by multiplying the desired

standard deviation � of the noise by either x1 or x2 found in Eqs. (5.2), (5.3).

5.3 Results for the UMTS turbo codes

Simulation results show that the best values of the (c; d) pair of the MSOVA algo-

rithm for the UMTS turbo codes are (0:74; 0:82). The results obtained for the UMTS

turbo codes are shown in the following subsections, explaining the performance of the

MSOVA algorithm compared to the MAP and conventional SOVA algorithms.

5.3.1 E¤ect of the Decoding Algorithm

The simulation results for the performance of the BER of the UMTS turbo code with

di¤erent decoding algorithms are shown in Figure 5.1. From Figure 5.1, it can be seen

that there is a large improvement in the BER using the MSOVA algorithm over that

of the conventional SOVA algorithm.

Table 5.1 shows a comparison between the minimum required Eb
N0

to achieve a

desired BER using the MAP, MSOVA and SOVA decoding algorithms with 1280-bits

frame and 10 decoding iterations. Using the MSOVA algorithm only requires about

(0:2 dB) for the Eb
N0
larger than that when using the MAP to achieve a BER of

�
10�5

�
compared to about (0:5 dB) required if the SOVA is used. If the desired BER is�
10�6

�
, then the MSOVA algorithm requires only about (0:14 dB) larger than the

MAP, compared to about (0:55 dB) required by the SOVA.

It can be seen from Figure 5.1 that the BER performance using the MAP and

the MSOVA algorithms become very close at SNR larger than (1:4 dB), which is very

important result if the complexity of both algorithms is taken into consideration.

5. Simulation Results 49

Figure 5.1: BER performance of the UMTS TC using di¤erent decoding algorithms
with frame size =1280 bits and 10 iterations.

5.3.2 E¤ect of Frame Size

A comparison between the BER of the UMTS turbo codes using the MSOVA de-

coding algorithm with di¤erent frame sizes based upon our simulations is shown in

Figure 5.2. From this �gure, it is clear that a large improvement in the BER per-

formance is achieved if the frame size is increased. for example, using a frame size

of (40 bits) requires about (3:2 dB) for the Eb
N0
larger than that when using a frame

size of (5114 bits) to achieve a BER of
�
10�5

�
. A comparison between the minimum

required Eb
N0

to achieve a desired BER using the MSOVA decoding algorithm with

di¤erent frame sizes are shown in Table 5.2.

So to have a better performance, a larger frame size must be used. But using

larger frame size will increase the memory requirements for the decoder, and increase

the decoding latency. So a compromise must take place between the performance from

one side, and the memory requirements and latency from the other side.

5. Simulation Results 50

Frame Size Eb
N0
at BER=10�5 Eb

N0
at BER=10�6

40 3.8 5.15
256 1.95 2.23
512 1.49 1.8
1280 1.07 1.26
5114 0.61 0.85

Table 5.2: Minimum value of SNR required for the desired BER in UMTS TC using
MSOVA with di¤erent frame sizes.

Figure 5.2: BER performance of the UMTS TC using MSOVA decoding algorithm
with di¤erent frame sizes and with 10 iterations.

5. Simulation Results 51

Figure 5.3: BER performance of the UMTS TC using MSOVA decoding algorithm
with di¤erent interleaver types at 1280-bits frame and 10 iterations.

5.3.3 E¤ect of the Interleaver Type

As indicated in chapter two, the interleaver has a great e¤ect on the turbo codes

performance. In this research, the e¤ects of three types of interleavers are investigated

on the UMTS turbo codes using the MSOVA decoding algorithm. Figure 5.3 shows

the BER performance of the UMTS turbo codes with a random, s-random and the

UMTS interleavers with frame size of 1280 bits. From Figure 5.3, it is seen that the

performance using the random and s-random interleavers su¤ers from an error �oor

after (1 dB) of EbN0 with a better performance of the s-random interleaver.

The performance using the UMTS interleaver is shown to have no error �oor with

a very good BER. The reason for that good performance is because of the good weight

distribution of the UMTS turbo encoder when the UMTS interleaver is used.

5.3.4 E¤ect of the Number of Decoding Iterations

The number of decoding iterations has a large e¤ect on the decoding performance.

Figure 5.4 shows the BER performance of the UMTS turbo codes using MSOVA

algorithm with 1280-bits frame.

It can be seen from Figure 5.4 that for the �rst few iterations, there is a signi�cant

5. Simulation Results 52

No. of Iterations Eb
N0
at BER=10�5

3 1.76
6 1.18
10 1.07
14 1.03

Table 5.3: Minimum value of SNR required for the desired BER in UMTS TC using
MSOVA with di¤erent number of iterations with 1280-bits frame

Figure 5.4: BER performance of the UMTS TC using MSOVA decoding algorithm
with di¤erent number of iterations.

improvement in the BER performance, while when the iteration number is increased

after certain value, the improvements are very small. From Table 5.3, the gain in the

value of EbN0 at BER of
�
10�5

�
obtained from 14 iteration over 10 iteration is only about

(0:04 dB), while the gain of using 10 iterations over 3 iterations is about (0:7 dB).

Since increasing the number of iterations over 10 iterations didn�t give a consid-

erable gain in the BER performance, and because increasing the number of iterations

will increase the latency of the decoding process, the number of iterations is chosen to

be 10 iterations in all the simulations included in this research.

5. Simulation Results 53

Code Rate (c;d) pair
1
2 (0:73; 0:82)
1
3 (0:74; 0:82)
1
4 (0:73; 0:83)
1
5 (0:72; 0:81)

Table 5.4: The best values for the MSOVA pair (c,d) used in the cdma2000 TC for all
code rates

Decoding Algorithm
Code Rate MAP MSOVA SOVA

1
2 1.48 1.63 2.24
1
3 0.8 0.96 1.7
1
4 0.55 0.71 1.54
1
5 0.37 0.52 1.36

Table 5.5: Minimum value of SNR required for the desired BER in cdma2000 TC using
di¤erent decoding algorithms with 1530-bits frame.

5.4 Results for the cdma2000 turbo codes

All the simulations included in this section use the encoder structure shown in Figure

4.3, with the cdma2000 inerleaver described in Figure 4.4, and use the puncturing

patterns speci�ed in Table 4.2 with 1
2 ,

1
3 ,

1
4 and

1
5 code rates. Fixed number of

decoding iterations is assumed with 10 iterations.

Through extensive computer search, it is found that the values of the c scaling

factor for the MSOVA decoding algorithm that give the best BER performance are in

the range [0:7� 0:75] for all code rates, and the values of the d scaling factor are in
the range [0:8� 0:85]. The exact values of (c; d) are shown in Table 5.4.

5.4.1 E¤ect of the Decoding Algorithm

BER performance plots of the cdma2000 turbo code with MAP, MSOVA and SOVA

decoding algorithms for 12 ,
1
3 ,

1
4 and

1
5 code rates and with 1530-bits frame are shown

in Figures 5.5, 5.6, 5.7 and 5.8 respectively. Table 5.5 shows a comparison between

the minimum required Eb
N0
to achieve a BER of

�
10�5

�
using the MAP, MSOVA and

SOVA decoding algorithms with di¤erent code rates and with 1530-bits frame.

From Table 5.5, it can be seen that using MSOVA algorithm for cdma2000 turbo

code has a large improvement on the BER performance over the SOVA algorithm.

5. Simulation Results 54

Figure 5.5: BER performance of the cdma2000 TC using di¤erent decoding algorithms
with 1

2 code rate and 1530-bits frame size.

Figure 5.6: BER performance of the cdma2000 TC using di¤erent decoding algorithms
with 1

3 code rate and 1530-bits frame size.

5. Simulation Results 55

Figure 5.7: BER performance of the cdma2000 TC using di¤erent decoding algorithms
with 1

4 code rate and 1530-bits frame size.

Figure 5.8: BER performance of the cdma2000 TC using di¤erent decoding algorithms
with 1

5 code rate and 1530-bits frame size.

5. Simulation Results 56

Frame Size Eb
N0
at BER=10�5 Eb

N0
at BER=10�6

186 1.8 2.4
570 0.975 1.18
1530 0.52 0.67
4602 0.24 0.36
9210 0.17 0.24

Table 5.6: Minimum value of SNR required for the desired BER in cdma2000 TC using
MSOVA with di¤erent frame sizes and with rate 1/5.

For example, the BER performance of the cdma2000 turbo code using the MSOVA

decoding algorithm requires only about (0:15 dB) over the MAP algorithm at
�
10�5

�
,

while the SOVA algorithm requires a bout (1 dB) over the MAP algorithm to have

the same BER.

It can be seen also that the BER performance for the MSOVA approaches that

of the MAP for values larger than (2:5 dB) with code rate of 12 , and for values larger

than (1:2 dB) with code rate of 13 , and for values larger than (1 dB) with codes rates

of 14 and
1
5 .

5.4.2 E¤ect of Frame Size

Simulation results for various frame sizes of the cdma2000 turbo code using MSOVA

algorithm with 1
5 code rate are plotted in Figure 5.9, and these results are analyzed

using Table 5.6.

From Table 5.6, it is clear that a large improvement on the performance is achieved

when increasing the frame size. For example, when using a frame size of 4602 bits,

the algorithm requires about (1:56 dB) to have BER of
�
10�5

�
less than that required

when using a frame size of 40 bits, while it requires about (1:28 dB) when using 1530

bits frame less than that when using 40 bits frame.

So it is desired from simulation results that to have a good performance, the frame

size must be as large as possible. But since increasing the frame size will increase the

memory requirements and the decoding latency as indicated in the previous section,

a compromise between the frame size and the memory size must be considered. This

result is found in most books talking about turbo codes.

5.4.3 E¤ect of Code Rate

The simulation results for various code rates using MSOVA algorithm with frame sizes

of 186 and 1530 bits are plotted in Figures 5.10 and 5.11 respectively.

5. Simulation Results 57

Figure 5.9: BER performance of the cdma2000 TC using MSOVA decoding algorithm
with di¤erent frame sizes and with 1

5 code rate.

Table 5.7 shows the minimum required Eb
N0
to have a BER of

�
10�5

�
with di¤erent

code rates for both; 186 and 1530 bits frame sizes. Using Figures 5.10 and 5.11,

and Table 5.7, it can be concluded that increasing the code rate will give a great

improvement in the BER performance. This result coincides with the literature of

coding theory. For example, using code rate of 15 gives a gain of about (1:1 dB) at

BER of
�
10�5

�
over the use of 12 code rate at 1530 bits frame size, while code rate of

1
3 gives a gain of about (0:67 dB) over that of

1
2 code rate at 1530 bits frame size.

Frame size
Code Rate 186 bits 1530 bits

1
2 2.86 1.63
1
3 2.2 0.96
1
4 1.96 0.71
1
5 1.8 0.52

Table 5.7: Minimum value of SNR required for the desired BER in cdma2000 TC using
MSOVA with di¤erent code rates.

5. Simulation Results 58

Figure 5.10: BER performance of the cdma2000 TC using MSOVA decoding algorithm
with di¤erent code rates and with 186-bits frame.

Figure 5.11: BER performance of the cdma2000 TC using MSOVA decoding algorithm
with di¤erent code rates and with 1530-bits frame.

Chapter 6

Conclusions and Future Work

6.1 Summary of Work

The Basics of turbo coding were introduced in this thesis, including encoding, decod-

ing, interleaving, termination and puncturing. Decoding algorithms were investigated

in details, while explaining the most known turbo decoding algorithms. Based upon

literature, comparisons of the complexity, performance and memory requirements were

also introduced.

The decoding algorithms introduced in this thesis were the MAP, Log-MAP, Max-

Log-MAP, Constant-Log-MAP, Linear-Log-MAP, SOVA and MSOVA. The MSOVA

algorithm proposed in [6] was considered to be the core of our research.

UMTS and cdma2000 turbo codes were studied using the MSOVA, MAP and SOVA

decoding algorithms. Comparisons between the performance of the three decoding

algorithms based upon computer simulations were introduced. An extensive computer

search was done to �nd the best scaling factors (c; d) used in the MSOVA algorithm

suitable for the UMTS and cdma2000 turbo codes.

6.2 Conclusions

The performance of MSOVA algorithm used in the UMTS and cdma2000 turbo codes

is excellent compared to the performance of the SOVA algorithm, taking into consid-

eration that the complexity of the MSOVA is similar to the complexity of the SOVA

algorithm, except that it has a small additional complexity caused by the two scaling

factors (c; d).

Although the MAP algorithm has a little bit better performance than the MSOVA

algorithm, it has a very complex structure such that the hardware and software re-

quirements for its implementation are very large, whereas the requirements for the

59

6. Conclusions and Future Work 60

MSOVA algorithm are relatively small.

Since the complexity of the simplest version of the MAP algorithm (The Max-

Log-MAP) is about twice the complexity of the MSOVA, The decoding speed of the

MSOVA algorithm is faster than that of all the versions of the MAP algorithm. So the

throughput of the MSOVA decoder is larger than the throughput of the MAP decoder.

The best values of the c scaling factor for the MSOVA algorithm suitable for the

UMTS and cdma2000 turbo codes were found to be in the range [0:7� 0:75], and the
values for the d scaling factor were in the range [0:8� 0:85].

Because of the previous results, it is recommended to adopt the MSOVA decoding

algorithm for the UMTS and cdma2000 turbo codes.

6.3 Future Work

Since all the simulations in this thesis were done for only the AWGN channel model,

other channel models such as �at fading channels can be used for further investigation

of the performance of the MSOVA algorithm used for UMTS and cdma2000 turbo

codes.

The hardware implementation of the MSOVA algorithm will give a better view on

its performance. So MSOVA can be implemented on FPGA to test its performance in

practical systems.

Bibliography

[1] C. E. Shannon, �A mathematical theory of communication,�Bell Systems Tech-

nical Journal, Vol. 27, pp. 379�423, 623�656, July, October 1948.

[2] T. K. Moon, "Error correction coding, mathematical methods and algorithms,"

John Wiley and Sons, Inc., 2005.

[3] R. H. Morelos-Zaragoza, "The art of error correcting coding," John Wiley and

Sons, Ltd., 2002.

[4] C. Berrou, A. Glavieux, and P. Thitimasjshima, �Near shannon limit error-

correcting coding and decoding: turbo-codes,� Proceedings of the IEEE Inter-

national Conference on Communications , pp. 1064�70, May 1993.

[5] S. Benedetto, D. Divsalar, D. Montorsi, and F. Pollara, �Serial concatenation of

interleaved codes, performance analysis, design, and iterative decoding,� IEEE

Trans. on Information Theory, Vol. 44, no. 3, pp. 909�26, May 1998 .

[6] C. Xiu Huang, and A. Ghrayeb, "A simple remedy for the exaggerated extrinsic

information produced by the SOVA algorithm," IEEE Trans. on Wireless Com-

munications, Vol. 5, no. 5, pp. 996-1002, May 2006.

[7] A. J. Viterbi, "Error bounds for convolutional codes and an asymptotically opti-

mum decoding algorithm," IEEE Trans. on Information Theory, Vol. IT-13, no.

2, pp. 260-269, April 1967.

[8] G. D. Forney, Jr., "The Viterbi algorithm," IEEE Trans. on Information Theory,

vol. IT-61, no. 3, pp. 268-278, March 1973.

[9] L. C. Perez, J. Seghers, and D. J. Costello Jr., "A distance spectrum interpretation

of turbo codes," IEEE Trans. on Information Theory, Vol. 42, no. 6, pp. 1698�

1709, November 1996.

61

BIBLIOGRAPHY 62

[10] L. Hanzo, T.H. Liew, and B.L. Yeap, "Turbo coding, turbo equalization and

space-time coding for transmission over fading channels ," John Wiley and Sons

Ltd., 2002.

[11] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes

for minimizing symbol error rate," IEEE Trans. on Information Theory, vol. 1T-

20, pp. 284-287, March 1974.

[12] J. Hagenauer and P. Hoeher, �A Viterbi algorithm with soft-decision outputs and

its applications,�Proceedings of IEEE GLOBECOM, pp. 1680-1686, November

1989.

[13] H. R. Sadjadpour, N. J. A. Sloane, M. Salehi, and Gabriele Nebe,"Interleaver

design for turbo codes," IEEE on Selected Areas in Comm., Vol. 19, no. 5, pp.

831-837, May 2001.

[14] J. Hokfelt, O. Edfors, and T. Maseng, "Assessing interleaver suitability for turbo

codes," Nordic Radio Symposium, Saltsjöbaden, Sweden, October 1998.

[15] Shu Lin, D. J. Costello, Jr., "Error control coding," 2nd edition, Pearson Educa-

tion, Inc., 2004.

[16] C.C. Wang, "On the performance of turbo codes," Military Comm. Conf. Proc.,

MILCOM, Vol. 3, pp. 987-992, October 1998.

[17] C. Fragouli, and R. D. Wesel, �Semi-random interleaver design criteria�, Proc.

Comm. Theory Symposium at Globecom, , vol. 5, pp. 2352�2356, December 1999.

[18] J. Hokfelt, O. Edfors, and T. Maseng, "A Survey on trellis termination alterna-

tives for turbo codes," IEEE VTC�99, Houston, Texas, May 1999.

[19] Fan Mo, S.C. Kwatra, and J. Kim, "Analysis of puncturing pattern for high

rate turbo codes," Military Comm. Conf. Proc., MILCOM, Vol. 1, pp. 547-550,

November 1999.

[20] W. J. Gross, and P. G. Gulak, "Simpli�ed MAP algorithm suitable for imple-

mentation of turbo decoders," Electronics Letters, Vol. 34, no.16, pp. 1577-1578,

August 1998.

[21] M. C. Valenti, and J. Sun, "The UMTS turbo code and an e¢ cient decoder imple-

mentation suitable for software-de�ned radios," International Journal of Wireless

Information Networks, Vol. 8, no. 4, pp. 203-215, October 2001.

BIBLIOGRAPHY 63

[22] D. W. Kim, T. W. Kwon, J. R. Choi, and J. J. Kong, "A modi�ed two-step

SOVA-based turbo decoder with a �xed scaling factor," IEEE ISCAS, Geneva,

Switzerland, Vol. 4, pp. 37-40, May 2000.

[23] G. Colavolpe, G. Ferrari, and R. Raheli, "Extrinsic information in iterative de-

coding: a uni�ed view," IEEE Trans. on Comm., Vol. 49, no. 12, pp. 2088-2094,

December 2001.

[24] H.R. Sadjadpour, "Maximum a posteriori decoding algorithms for turbo codes,"

Proc. of SPIE Conf., Orlando, FL, Vol. 4045, pp. 73-83, April 2000.

[25] European Telecommunications Standards Institute (ETSI), "Universal Mobile

Telecommunications System (UMTS); Multiplexing and Channel Coding (FDD),"

3GPP TS 125.212 version 7.1.0 Release 7, pp. 16-21, June 2006.

[26] Third Generation Partnership Project 2 (3GPP2), "Physical layer standard for

cdma2000 spread spectrum systems, Release C," 3GPP2 C.S0002-D, Version 2.0,

pp. 97-104, September 2005.

[27] D. U. Lee, J. D. Villasenor, W. Luk, and P. H.W. Leong, " A hardware gaussian

noise generator using the Box-Muller method and its error analysis," IEEE Trans.

on Computers, Vol. 55, no. 6, pp. 659-671, June 2006.

	Cover
	Abstract (Arabic)
	Abstract (English)
	Contents
	List of Figures
	List Of Tables
	Chapter1: Introduction
	Channel Coding
	Channel Capacity
	Hard and Soft Decision Decoding
	Turbo Codes
	Thesis Overview

	Chapter 2: Principles of Turbo Codes
	Introduction
	Preliminaries of Coding Theory
	Types of Codes
	Properties of Codes

	Turbo Encoder Structure
	Turbo Decoding
	Log Likelihood Ratio Representation
	Turbo Decoder Structure
	The SISO Decoder
	Iterative Decoding Proces

	Interleavers
	Purpose of the Interleaver
	Interleaver Types

	Trellis Termination
	Puncturing
	Stopping Rules for the Iterative Decoder

	Chapter 3: Turbo Decoding Algorithms
	Introduction
	The MAP Algorithm
	Approximations to the MAP Algorithm
	Representation of The MAP Algorithm in the Log Domain
	The Max-Log-MAP Algorithm
	The Log-MAP Algorithm
	The Constant-Log-MAP Algorithm
	The Linear-Log-MAP Algorithm

	The Soft Output Viterbi Algorithm (SOVA)
	The Modified SOVA Algorithm (MSOVA)
	Comparison of the Turbo Decoding Algorithms

	Chapter 4: Case Study: UMTS and
	Introduction
	UMTS Turbo Codes
	Encoder Structure
	Trellis Termination
	UMTS Turbo Interleaver

	The cdma2000 Turbo Codes
	Encoder Structure
	Puncturing Patterns
	cdma2000 Turbo Interleaver

	Chapter 5: Simulation Results
	Introduction
	Simulation Setup
	Basic Processing
	Channel Model

	Results for the UMTS turbo codes
	Effect of the Decoding Algorithm
	Effect of Frame Size
	Effect of the Interleaver Type
	Effect of the Number of Decoding Iterations

	Results for the cdma2000 turbo codes
	Effect of the Decoding Algorithm
	Effect of Frame Size
	Effect of Code Rate

	Chapter 6: Conclusions and Future Work
	Summary of Work
	Conclusions
	Future Work

	Bibliography

